Chapter 4

The Divergence Theorem

In this chapter we discuss formulas that connects different integrals. They are

(a) Green’s theorem that relates the line integral of a vector field along a plane curve to
a certain double integral in the region it encloses.

(b) Stokes’ theorem that relates the line integral of a vector field along a space curve to
a certain surface integral which is bounded by this curve.

(c) Gauss’ theorem that relates the surface integral of a closed surface in space to a triple
integral over the region enclosed by this surface.

All these formulas can be unified into a single one called the divergence theorem in terms
of differential forms.

4.1 Green’s Theorem

Recall that the fundamental theorem of calculus states that
b
[ s =0) - sta).

It relates the integral of the derivative of a function over an interval [a, b] to the endpoint
values of the function. In higher dimension we replace the function by a vector field.
A possible two dimensional extension would be a formula relating the double integral of
some quantity involving the partial derivatives of a vector field to the line integral of the
vector field along its boundary curve. This is the content of Green’s theorem.
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Theorem 4.1. (Green’s Theorem) Let F = Mi+ Nj be a C'-vector field in an open
set G in the plane. Suppose C' is a simple, closed curve in G and the set D it bounds lies
completely inside G. Then

ON OM
_—— A= M N 4.1
//D(ax ay)d 5’% du+Ndy., (4.1)

where C' is oriented in the anticlockwise way.
A simple, closed curve divides the plane into two regions, one bounded and the other
unbounded. Here C' bounds D means D is the bounded region.

Recall that line integral

%de—FNdy:&l{F-dr,
c c

is called the circulation of F around the closed curve C. When F is the velocity vector
field of some fluid, its circulation around a curve measures the amount of the fluid flowing
around the curve in unit time. When an admissible parametrization r : [a,b] — C is
chosen, the line integral can be evaluated by the formula

b
%deJrNdy:/ F(r(t))-r'(¢)dt .
C a

Proof. We will prove Green’s theorem in a special case, namely, D can be expressed
simultaneously in the following two ways:

D ={(z,y): filz) <y < folw), = €la,b]}

and
D={(z,y): q1(y) <z < galy), y €le.d]} .

Typical examples of such regions include ellipses and rectangles.

//—dA_ ﬁde, (4.2)
//—dA yﬁwdy. (4.3)

Green’s theorem follows by adding (4.2) and (4.3) together.

We shall show that

and

The boundary curve C of D consists of the four curves:
Cr: 1i(z) = (2, fi(x), =z €[al],
Cy: I'Q(.T) = (l’,fg(l‘)), T e [aa b] )
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Y21 Y2(y) = (by), y€[fi(d), f2(0)] ,
Yt "Yl(y) = ((L,y), (RS [fl(a>7f2(b)] s

where v, and v, may degenerate into points. We have C' = C} + v —

By Fubini’s theorem

/—dA = // xydyd:v
f1(@)

On the other hand, v{(y) = (0,1), so

f2(a)
/ Mdr= [ M(a,y)a'(y)dy =0,
ol f1

as 7/(y) = 0. By the same reasoning

/de:(),
Y2

too. Therefore,

Cy —

//—dA——/ de:yg de:—ﬁde,
C1—Cq Ci+72—Ce—m1 c

and (4.1) follows. Similarly, we can prove (4.2).

When the region D is of more complicated geometry, one can use horizontal and
vertical lines to decompose it into the union of regions of the above types. We will not go

into the details.

We will discuss four applications of Green’s theorem:

Evaluation of line integrals,

Study independence of path,

An area formula,

Localizing divergence and rotation.

]
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The first application is illustrated in the following example.

Example 4.1. Evaluate
55 —y?dr + aydy
c

where C' is the boundary of the square at (0,0),(1,0),(1,1) and (0,1) in anticlockwise
direction.

A direct evaluation is not difficult, but tedious as it involves evaluating four line
integrals. Instead we take advantage of Green’s theorem

yg—yzdx—i-xydy = //(8my y)
c
R
1,1
= //3ydxdy
0 Jo
3

5 .

Next, we return to the discussion on independence of path of vector fields in Chapter
3. We established Theorem 3.4 which asserts that a vector field in R™ is conservative if
and only if the compatibility condition (3.9) holds (when n = 2). Now, by using Green’s
theorem, we will present a more general result.

A region in R is called simply connected if it is connected and every closed curve lying
in it can be deformed continuously to a point inside the set itself. The entire plane, a
disk, a convex set and more general a star-shaped region are examples of simply connected
sets in the plane. On the other hand, a punctured disk (a disk with the center removed)
and an annulus are examples of connected but not simply-connected regions. Roughly
speaking, simply connected regions are those connected regions which do enclose any holes.

Theorem 4.2. Let F = Mi+ Nj be a C'-vector field in a simply connected region G in
the plane. It is conservative if and only if the compatibility condition holds:

oM  ON
a_y — % . (4.4)

This generalizes Theorem 3.4 where it is required the vector field to be defined in the
entire space.

Proof. In Chapter 3, it was shown that (4.4) (that is (3.9)) holds when the vector field
F is conservative. Conversely, under (4.4) a potential function were constructed under
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the assumption that the line integrals along all simple curves connecting two points have
the same value. It suffices to verify this property in the present situation. Let v; and
9 be two simple curves connecting point A to point B. When these two curves do not
intersect, 7 = y; — 72 forms a simple closed curve. Green’s theorem implies that

%de—l—]\fdy:O,
Y

hence
/de+Ndy:/de+N,dy.
71 Y2

When ~; and v, intersect, we may add another curve 3 connecting A and B so that
it does not intersect 7, and 7. Thus 7 — 3 and 75 — 73 form simple closed curves
respectively. Using

/de+Ndy:/de+Ndy:/Md:1:+Ndy,
" 73 72

we draw the same conclusion. Using this property one can define the potential of F as in
the proof of Theorem 3.4. The existence of a potential & shows that

/BFwds:®ﬂﬂ—®@®,

along any path from A to B in G no matter the path is simple or not. We conclude that
F is conservative. O

Green’s theorem is a formula relating the line integral of a curve to a double integral
of the region it encloses. This observation leads to a formula expressing the area of the
region in terms of a boundary integral.

Let A be the area of the region enclosed by a simple closed curve C' in the plane.
Applying Green’s theorem to the vector field yi yields

A:—éyﬂ. (4.5)

Similarly, choosing the vector field to be xj yields

A= yéxdy . (4.6)

These two formulas together implies a more symmetric formula for the area:

1
Az—%—yda:%—:cdy. (4.7)
2 Je

Example 4.2. Find the area of one leaf of the four-leaf rose r = 3 sin 26.
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The leaf in the first quadrant is ranged over 6 € [0,7/2]. In general, when a curve
is parametrized by r(f) in polar coordinates, it is r(0)cos i + r(f)sindj in cartesian
coordinates. We have

—ydr 4+ x dy
= (—r(0)sin0)(r'(0) cos @ — r(0) sin ) + (r(6) cos 0)(r'(0) sin 6 + r() cos 0)db
= 7r%(0)do .

Using the area formula, the area of one leaf is

1 7T/2
‘j[ 9sn929d9::95.
2 Jo 8

Example 4.3. Find the area of the loop in the folium of Decartes given by the zeros of
the equation 23 + y3 = 3xy.

We first introduce a parametrization of the curve. Letting y = tz, we get

3t 3t?
rT=——" = —.
1+ YT 14m

One can verifies that the loop is described by ¢ € [0,00). As ¢ runs from 0 to oo, the loop
runs in the positive direction. You may look up Wiki for more information concerning
this curve.

We have
p =32 3[(1+ %) —3t3]  —93(1 — 2t?)
— xr = =
VST 1y (1+3)3

Therefore, the area of the loop is given by
% —9t3(1 — 2t
c o (1+)?

< 1-2
= —3/ S
o (1+2)°

3
5 -

These formulas express the area enclosed by a curve in terms of the curve. It has inter-
esting geometric consequence. For instance, together with Fourier series, the last formula
can be used to prove the classical isoperimetric inequality, that is, among all regions en-
closed by a simple closed curve with the same perimeter, only the disk has the largest area.

Finally, recall that in Chapter 3 we introduce the concept of the circulation and the
flux of a vector along a curve. Let F = Mi+ Nj be C'-vector field defined on the simple
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closed oriented curve C' with the chosen tangent t and normal n. The circulation and the
flux of F around C' is defined to

%MM+N@,
C

and
%Mdy—Ndx,
c

respectively. Green’s theorem suggests a way to define the circulation and the flux of a
vector field at a point. In other words, we can localize circulation and flux.

Let p be a point in some open set G C R? where a C'-vector field F = Pi + Qj
is defined. Let C be a simple, closed curve anitclockwisely oriented enclosing p in its
interior, and D the region it bounds. The quantity

ON oM
Mde+ Ndy = ﬂ( )M
|m¢ |m

> Se) -G ).

In view of this, we define the curl (or the rotation) of F at p to be

ot Fp) = (51— 52) ).

Similarly, the flux of F across C' is equal to

%Mdy—]\fdx.
c

By Green’s theorem,

8M ON

Mdy— Ndx = // ( ) dA
|m¢ \m
ON
— .
) P

Hence, we define the divergence (or flur density) of F at p to be

div F(p) — @f+%§my

Example 4.4. Evaluate

Yy —X
d + dy |
émMWQx 2y
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where C is the ellipse 2%/4 4+ y*/9 = 1 oriented in positive direction.

By a direct computation, the vector field

y . —x
i+
x2 4 y? 24y

1.

satisfies M, = N,. See the end of Section 3.6 in Chapter 3. However, since it is not
defined at the origin, we cannot appeal to Green’s theorem to conclude that this line
integral vanishes. What we could do is to change it to an easier line integral. In fact,
let C,. be a small circle centered at the origin and is contained inside C. We orient C,
in clockwise direction and connect C, to C' by the line segment L which runs from (r,0)
to (2,0). Then I' = C — L + C, + L forms a closed curve enclosing a simply-connected
domain. I' is not simple, but we can lift =L up a little bit to make it simple. Applying
Green’s Theorem to this simple, closed curve and then passing to limit, we have

0 = %de—l—]\fdy
r

([ e
= (/C+/r)Md:c+Ndy.

Therefore,

Y —Z Y —Z
Y e —" gy = - YT g
/c$2+92 w—l—x2+y2y er2+y2 x+$2+y2y
2m
= / (cosfcosf + (—sinf)(—sin b)) dt
0

= 2.

The trick of adding an artificial line segment to form a simply conneced region in this
example leads us to the general form of Green’s Theorem. Let D be a region bounded
by several simple, closed curves Cy, Cy, - - -, C,, where (] is the outer one and the rest are
sitting inside C.

Theorem 4.3. Let F = Pi+ Qj be a C'-vector field in D. Then

//D(%‘%) dA:ggédewwdy,

where C is oriented in anticlockwise way and Cj,j > 2, are in clockwise way.
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4.2 Stokes’ Theorem

Stokes’ theorem is a curved version of Green’s theorem, where the two dimensional region
is replaced by a surface in space. Let F = Mi+ Nj + Pk be a C'-vector field in some
open set GG in space. The curl of the vector field F is given by

1F = a_P_a_N ‘+ _a_P_|_a_M ‘_|_ a_N_a_M k
= oy 0Oz ! or | 0z )? oxr Oy '

As F is C!, the curl of F is a continuous vector field in G. When the vector field is a
planar one, that is, M = M(x,y), N = (z,y) and P = 0, the curl of F becomes

ov oy,
or Oy ’

the term appearing in Green’s theorem.

We often use the notation V x F to denote the curl of F as suggested by the formal
expression by determinant

i
9y 0,
M N

R

Let S be an oriented surface in space whose boundary is a curve C'. An orientation
assigned to C' is based on the right hand rule: Let n be the unit normal of S and b be
the unit vector at C' which is tangential and pointing inward to S and perpendicular to
C'. Then the unit tangent of C' t is chosen such that t x b points to the same direction
of n. When a person is walking along the boundary in the positive direction (t-direction)
with his/her head pointing upward n, the surface should be lying on his left hand side.

Theorem 4.4. (Stokes’ Theorem) Let S be an oriented surface in space whose bound-
ary s a simple, closed curve C. For a C*-vector field F on S,

//VxF-ndazgﬁF-dr,
s c

where the orientation of C is described as above.

Proof. In the following it is more convenient to use (z,y,z) and (M, N, P) instead of
xi+ yj + 2k and Mi+ Nj+ Pk.

Let r : D — S be a parametrization of S so that r, x r, points to the normal direction
of S. It can be shown that the anticlockwise direction of the boundary curve Cy of D is
mapped to C' with the same orientation of C'. Let

1(t) = (u(t),v(t)) te€la,b],
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be a parametrization for Cy. Letting r(u,v) = (x(u,v),y(u,v), z(u,v)), the map
£ (au(t), v(6), y(u(t), (), 2(u(b), o) , ¢ € [a,b]
gives a parametrization of the curve C'. Using
dr = (z,u' + z,0) dt, dy = (yu' +y,0')dt, dz = (z,u' + 2,0")dt

the left hand side of the Stokes’ theorem is
}5 F . dr
C
b
— / M (x,u' + z,0") + N(y,u' + y,v') + P(z,u' + 2,0") dt
b
— / [(Mx, + Ny, + Pz,)u' + (Mz, + Ny, + Pz,)v'] dt

b
= / (Au' + Bv')dt

= M(xz(u,v),y(u,v), z(u,v))x,(u,v) + N(x(u,v),y(u,v), z(u, )y, (u,v) + P(z(u,v), y(u,v), z(u,v)

B(u,v)
= M(z(u,v),y(u,v), z(u,v))x,(u,v) + N(z(u,v),y(u,v), z(u, v))y,(u,v) + P(xz(u,v),y(u,v), z(u, v)

Appealing to Green’s theorem, the left hand side of the Stokes’ formula is equal to
b
/ (Au’' + Bv') dt

= él(A,B%d’V

_ //D (Bu — A,) dA(u, v)

D

+(P:Bxu + Pyyu + Pzzu)zv + PZUu - (erv + Myyv + Mzzfu)xu - quv
—(Nyxy + Nyyy + No2) Yy — Nyuw — (Poty + Py + Pozy) 2 — Pzyy) dA(u, v)
(

- //D[ N, — My)(xuyv - xvyu) + (P:c - Mz)(xuzv - xvzu) + (Py - NZ)(yuZU - yvzu)] dA .
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On the other hand, (u,v) — r = (x(u,v),y(u,v), z(u,v)) parametrizes S by D. We
have

ry Xr, = (yqu — YvRuy —Tuy + Lyl Lulv — xv?Ju) .

The right hand side of the formula is

/VxF~nda
= //P N., =P, + M,,N, — M,) -1, X v, dA(u, v)

= // [(Py — N)(Yuzo — Yo2u) + (— Py + M) (=202 + Ty2u) + (No — M) (20y0 — Toyu)] dA(u, v) .

By comparing the left and the right hand sides of Stokes” formula, we conclude that the
theorem holds.

O

Example 4.5. Evaluate the line integral
%(y—kz)dm%—(z%—x)dy—l—xdz,
C

where C is the intersection of the cylinder x? + y? = 1 with the plane z +y + 2z = 10
oriented in the anticlockwise direction.

The direct way of evaluation is to write down a parametrization for the curve C.
Indeed, the projection of this curve onto the xy-plane is the circle 22 + % = 1. Hence an
admissible parametrization is

0 — (cosf,sinf, (10 — cosf —sinh)/2) , 0 €[0,2x] .

But, here we would like to apply Stokes’ theorem. Observing that C is the boundary
of the oriented surface given by the graph of z = (10 — x — y)/2 over the unit disk
Dy : 2%+ y? < 1 with normal pointing upward. For F = (y+ 2)i+ (z + x)j + xk, we have
V x F = —i. On the other hand, the upward normal is

—gi—p,j+k \/6

/it a@+e 6

—(@{+j+2k).
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By Stokes’ theorem,

yg(y+z)dx+(z+x)dy+xdz
c

_ //S—i-nda
_ _//DlédA, (da:(1+!Vgo|)2dA:\/§dA)

5 -
A very useful consequence of Stokes’ theorem is

Corollary 4.5. Suppose that a simple closed curve C' in space bounds two surfaces Sy
and Sy so that S = S1|JSs forms a closed surface whose unit outward normal coincides
with the normals of S1 and Sy. For any C'-vector field defined in an open set containing

S,
/ VxF-nda:—/ V x F-ndo .
So S1

Proof. Let C and C5 be the respective oriented boundary curves for S; and Ss. It is clear
that Cy = —C5. By Stokes’ theorem,

/ VxF- -ndo = §£F~dr
SQ C12
255 F. dr
—C
= —¢F~dr
Ch

= —/ VxF -ndo.
S1

]

Example 4.6. Let X be the upper hemisphere 22 + y? 4+ 22 = 1,z > 0, with normal
pointing upward. Evaluate the integral

//VxF-nda,
b

where F = yi + 2%2j + %k .
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First of all, we calculate
V xF=—2% - 2¢"j+ (212 — Dk .

Let S be the unit disk in the zy-plane. We regard it as a flat surface in space. With
normal pointing down, > and S are two oriented surfaces sharing the same boundary. By
the above corollary,

/ V xF - -ndo
>

= —//VX (yi + 22j + e*°k) - —kdo
S

_ //S(zxz—nda

An obvious parametrization of S is (x,y) — (x,y,0). Hence we continue to get

/VX(yi—l—:pQZj—l—e”k)-nda:// —dA =—
b)) Dy

Alternatively, we may use Stokes’ theorem to replace it by a line integral. Indeed, the
boundary curve is simply the unit circle in the zy-plane which admits the parametrization
C: 0 (cosf,sinf), 6 € [0,2n] in positive direction. By Stokes’ theorem,

//VXF~nd0 = ¢F~dr
> c

27
= / (sin#i+ k) - (—sin 6i + cos 0j) db
0

27
= —/ sin’ 6 do
0

= —T.

Next, we examine the meaning of the curl vector V x F. Let p be a point in space
and introduce a coordinates system using this point as the origin. Let £ be a unit vector
and P be the plane perpendicular to it. Consider a simple closed curve C' on P which
surrounds the origin. Letting its enclosed region be D, by Stokes’ theorem,

Mdx+ Ndy+ Pdz
i,

lD//VxF Edo
— VxF(p

as C shrinks to p. Hence the term V x F(p) - £ measures the strength of rotation of the
vector field F along the &-direction. This gives a meaning to the curl vector. From

VXxF-£=|V xF|[¢ cosb
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where 6 € [0, 7] is the angle between the curl vector and £, we see that the strength of
rotation is maximal when ¢ is equal to V X F or —V x F.

Vector fields that are gradients of functions constitute a large class of irrotational vec-
tor fields.

Theorem 4.6. Let ® be C?-function in some open set G in space. Then F = V& is
wrrotational.

Proof. When F is the gradient of &, M = ®,, N = &,, P = ®,. Then
M, - Ny, =&, —P,, =0 .

Similarly all other equations in the compatibility conditions hold. O]

In Chapter 3, it was shown that a conservative Cl-vector field F = Mi + Nj + Pk
must satisfy the compatibility condition

ON 9P OM 0P OM 0N
or 9z 9z Oxr’ oy  Ox

In other words, a conservative vector field must be irrotational. Now we show that any
conservative vector field arises in this way when it lies in a simply connected region. As a
consequence of Green’s theorem, we have seen this when the vector field is in the plane.

Theorem 4.7. An irrotational C'-vector field F in some simply connected region G is
conservative.

Proof. 1t suffices to show that the line integral of F along any simple closed curve in G
vanishes. Let C' be a simple closed curve in the region G. Since G is simply connected, C'
can be deformed into a point inside G. The deformation itself forms an oriented surface
S taking C' as its boundary. By Stokes’ theorem and the compatibility condition,

?gF-dr://VxF-nda:O.
c s

]

To conclude this section, we consider oriented surfaces which are bounded not by a
single but by finitely many nonintersecting simple, closed curves. Just like Theorem 4.3,
using the trick of cutting-up one can establish the following general Stokes’ theorem.
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Theorem 4.8. Let F be a Cl-vector field in some open set G in space. Let S be a
Cl-surface in G which is bounded by finitely many nonintersecting simple, closed curves

Ci,---,C,. Then
//VxF-ndazzgg F.dr.
o j=1"7Cj

4.3 Divergence Theorem

Recall that there are two different formulation for Green’s theorem. Let F = Mi+ Nj be
a Cl-vector field in some open set G' and C' a simple closed curve whose enclosed region

D sitting in G. Then
ON OM ) 55
— —— | dA=QQ F-tds,
//D ( Ox Ay c

where t is the unit tangent along the anticlockwise direction. Alternatively, we can express
the formula in the following way:

L5 o

where n is the outward unit normal of C.

Stokes’ theorem may be viewed as a generalised version of the tangent form of the
Green’s theorem where a plane region is replaced by a surface in space. The divergence
theorem we are going to discuss may be regarded as a generalised version of the normal
form where now a plane region is replaced by a region in space.

Theorem 4.9. Let F = Mi+ Nj+ Pk be a Ct-vector field in an open set G in R3. Let
S be a closed C'-surface which is the boundary of a bounded region Q C G. Then

// V-FdV:#F-nda,
Q 5

where n 1s the unit outward normal at S.

The divergence of a vector field, V - F is given by

oM ON OP

F=— 4+ —+ —.
v 8x+8y+8z

Proof. We only consider the special case that {2 can be expressed simultaneously in the
following three ways:

{(x,y,2) : (z,y) € D, filw,y) <2< falw,y)},
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{(@,y,2) 0 (y,2) €D, g1(y,2) < v < ga(y, 2) },

and
{(xaya Z) : (QT,Z) € Da hl(ﬂf,Z) S Yy S hg(l‘,Z)} )

where D is a region in the respective plane. For instance, rectangular boxes and ellipsoids
admit such representations.

We will show that in the first case,

// —dV #Pk-nda. (4.8)

A similar argument will establish

//—dV #Mi-nda,
S
//—dV+#Nj-nda.

S

The divergence theorem follows by adding up these three identities.

and

Let us now prove (4.9). We may further assume that S = S; | Sz where

S = {(way>f1($ay>) : (iL‘,y) € D}7 Dy = {(:L‘,y, f2(wuy) : (:B,y) € D} .

Moreover, these two surfaces meet a curve whose projection to the zy-plane is a curve C
bounding D. We write

#Pk-nda:// Pk-nda—i—// Pk -ndo.
S S1 S

As . .
_ —foel — fouj + k
14+ |Vf2|2
on Sy,

[ pemao= || et = ], Pl ptn i atn

On the other hand, . .
_ flxl + flyJ -k

1+ |Vf1|2

on S; (noting that it points downward),

JJ. Preondr=— || Py s dacey.
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Therefore,

#Spk ‘ndo = //D (P(z,y, fo(z,y)) — P(z,y, fi(z,y))) dA(z,y) .

On the other hand,
P
// 8_ av
Q 82

_ ///D / j::j)%—fdsz
_ //D (P(x,y. fo(w,)) = Plx,y. fi(x,y))) dA(z,y) ,

and the desired result follows.
O]

Example 4.7. Verify the divergence theorem for the vector field F = xi 4 yj + zk and
Q) is the ball B, 2% 4+ 2 + 2% < @

The divergence of F is

0 0 0
F=— —y+—2=3.
\Y% 8;cx+8yy+8zz 3

///V~FdV:///3dV:3xl—lﬂa3:4ﬂa3.
B B 3

On the other hand, it is clear that the outward unit normal at a boundary point (z,y, z)
is given by

Therefore,

1
n:a(mi—l—yj—l—zk).

We have
1
# F-ndo = # (21 +yj + zk) - —=(zi+ yj + zk) do
oB oB a
1
= —va# do
a 9B
= 4rad® .

Example 4.8. Find the flux of F = zyi + yzj + xzk outward through the surface of the
cube cut from the first octant by the planes xt =1,y =1 and z = 1.

Let © be the solid cube and C' its boundary. By the divergence theorem, the flux is

equal to
//F-nd0:///V-FdV.
c Q
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It suffices to calculate the triple integral which is obviously easier. We have V-F = z+y+z.
Therefore, the flux is equal to

///Q(ervaz)dV:/01/()1/01(x+y+z)dxdydz:g

The divergence of a vector field may be regarded as a mapping which maps a vector
field to a function. Let p be a point in some open set where a C'-vector field F is defined.
Consider a simple closed surface S which contains p in its interior D. The outward flux

of F across S is given by
# F-ndo,
s

where n is the unit outward normal. By the divergence theorem,

o il
—@pF ndo = V-Fdv
DI JTs D]

— V- -F(p

as S shrinks to p . Hence V - F may be viewed as a measurement of the flux of F at
the point p. When the vector field is two dimensional, its divergence reduces to the one
discussed in the last chapter.

The possibility of localizing the divergence is of fundamental important in physics. As
an illustration let us derive the equation of continuity. Image the space is occupied with
some fluid which is described in terms of its density J and velocity u. Both are functions
of (x,y,z,t). We fix a region 2 in space and consider the mass of the fluid inside this
region. As the density changes in time, the mass

- //Q 5(x,y, 2,t)dV

is also a function of time. The rate of change in mass is given by

h = // i %5@, g2, t)dV | (4.9)

On the other hand, the fluid that leaves or enters through a small piece Ao on the surface
of 2, S, in time At is given by
u-nAcAt

where n is the unit outward normal. Hence the mass leaving or entering the region through
Ao is equal to
ou-nAcAt .
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It follows that the mass that leaving/entering S in instant time is equal to

d o M(t+ At) — M(t)
EM(t) - Al};r—{lo At
= — lim i// ou - nAcAtdo
At—0 At S

= — # ou-ndo.
S
Comparing with (4.9), we have

///d—é(xjy,z,t)dV:—#éu-nda.
o dt s

Now, by the divergence theorem,

///Q(Z_f+v'%> dv =0.

Since here €2 could be any region, one conclude that

dd

—+V-ou=0, 4.10
o (4.10)
must hold. This equation, called the equation of continuity, relating the density to the
velocity is a form of conservation of mass. Together with other equations such as con-
servation of energy, etc, one obtain a full system of partial differential equations for the

density and the velocity of the fluid.

In the divergence theorem stated above, it is assumed that the boundary of the region
is a single closed surface. When the boundary consists of several closed surfaces, we have
the following general divergence theorem.

Theorem 4.10. Let € be a region in space whose boundary is composed of finitely many
closed C*-surfaces Sy, Sy, -+ ,S,. Then for any Ct-vector field F in (Q,

///V-FdV:Z# F.-ndo,
& j=17/5;

where n is the unit outward normal to S;.

This theorem is the space version of the planar case Theorem 4.3. Its proof is similar
by cutting up the region. Since it is inconvenient to draw pictures here, you are referred
to the text for details.

A vector field is called divergence-free if F = 0. The following result provides us with
a large class of divergence vector fields.
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Theorem 4.11. The divergence of a C*-curl vector field always vanishes.

Proof. Let F be a curl, that is, F = V x H for some vector field H = Mi + Nj + Pk.
Then

V-F = V- ((N: = F)i+ (=M. + P)j+ (M, — N;)k)
= (N,—P))y+ (—M,+ P,), + (M, — N,),
= 0.

]

Recall that the curl of a gradient vector field always vanishes, that is, V x V& = 0.
Now, the divergence of a curl vector field always vanishes as well. In the former one asks,
when a vector field F satisfies V X F = 0, is F a gradient? The answer is yes when the
underlying region is simply connected. Here one may ask a similar question. Namely,
when V - F = 0, is there another vector field A such that F =V x A? It turns out the
answer is yes when the region is star-shaped.

According to the divergence theorem, a divergence-free vector field F satisfies

#F~nd020,
s

over any simple, closed surface S. In other words, its flux across any closed surface van-
ishes. A special case is the following theorem of Gauss which appears in the study of
electricity.

The electric field generated by a point charge locating at the origin is given by

1
—(xi+yj+zk), r=+a?+y>+22,

E =
ey r3

where ¢ is the charge and ¢( is some positive constant. The electric field is divergence
free:

V-E=
471'50

2 1 .2 2 2 .2 2 2 2 2
+ z¢ —2x e+ z0—2 4+ x°— 2z
q (y : N W vt ) _0.
r r r

Theorem 4.12. The fluz of the electric field across any closed C'-surface enclosing the

origin is the same and equal to q/e.

Proof. Let €2 be the interior of S. Since the electric field is not well-defined at the origin,
we cannot apply the divergence directly to €). Instead we consider the region €2, which is
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bounded by S and the small sphere X, : 2% + y? + 2% = r%. Then the electric field is C*
in 2, and is of divergence free. By the divergence theorem,

0:// V~EdV:#Eonda+# E -ndo ,
r S r

and the flux across S is equal to
— # E -ndo .

When regarded as the inner boundary of {2, the unit outer normal n at X, points toward
the origin and is given by —(xi + yj + zk)/r. So,

1 1
—# E-ndo = -° # —(xi+yj+ 2k) - —(2i + yj + 2k) do
B drey Jfs, 3 r
qg 1 2 2 2
= — d

P Er(x +y° 4+ 2%)do
_ 4
€0



